
An Iterative Algorithm for Single-pair K Shortest Paths Computation

GUISONG LIU⋆, ZHAO QIU, WENYU CHEN
School of Computer Science and Engineering

University of Electronic Science and Technology of China
Xiyuan Road 2006, West High-Tech Zone, Chengdu, China

⋆lgs@uestc.edu.cn

Abstract: - In this paper, we report a novel method to compute thek shortest paths between a given pair of nodes
in a given directed weighted graph, where loops are allowed in the solution paths. Once the shortest path from
source node to goal node has been computed, the algorithm finds the nextk− 1 shortest paths recursively. A* and
on-the-fly search strategies are also applied to the proposed algorithm. The correctness of the presented algorithm
is analyzed mathematically, and the simulative results confirming the superior performance of the algorithm to
others in the literature for real road datasets are reported, especially whenk is rather small.

Key–Words:- K shortest paths, Heuristic search, On-the-fly search

1 Introduction

The K-Shortest-Paths problem (KSP) is about find-
ing thek shortest paths in a directed weighted graph
for an arbitrary natural numberk. Since first pro-
posed by Hoffman and Pavley in the 1950s [1], KSP
has got great attention and can be separated into two
variants according to whether loops are allowed in the
solution paths or not [2]. Recent application domain
examples for KSP problems include network rout-
ing optimization[3], multiple object tracking[4], se-
quence alignment[5], gene network[6], scheduling[7],
dynamic routing[8] and many other areas in which op-
timization problems need to be solved[9].

The goal of most of algorithms is to compute
KSPs between two given nodes, which also can be
called single-pair KSP problem [2, 10, 11, 12, 14, 19,
16]. The related problem is single-source KSP prob-
lem which aims to find KSPs from a given node to
each other node[6, 9]. In this paper, we consider the
variant of the KSP problem, where loops are allowed
in the solution paths. In terms of asymptotic com-
plexity, the most advantageous algorithm for solving
this variant of KSP is Eppstein’s Algorithm (EA)[9],
with a complexity ofO(m + n log n + k) in terms
of both runtime and space, wheren is the number of
nodes andm is the number of edges in the problem
graph. Jimenez and Marzal presented a Lazy Variant
of Eppstein’s Algorithm (LVEA) [21], which main-
tains the same asymptotic worst-case complexity as
EA and outperformed EA in their experiment result-
s. The K* algorithm proposed by Husain Aljazaar
and Stefan Leue [10] is the most efficient algorithm
known so far according to their experimental result-

s. It maintains the same asymptotic worst-case com-
plexity as the EA algorithm. Their experimental eval-
uation showed that K* is more efficient than LVEA
in route planning and the computation of counterex-
amples in stochastic model checking. However, it is
essential for EA, LVEA and K* to establish a compli-
cated data structure before finding thek shortest path-
s. In this paper, we present an Heuristic and Recursive
Algorithm by using on-the-Fly search (HRAF), aim-
ing to solve the KSP problem, which loops and multi-
ple edge between nodes are allowed. When the short-
est path is computed, the algorithm is able to find the
nextk − 1 shortest paths in a recursive way. HRAF is
very efficient whenk is small while time-consuming
whenk is large. But in a lot of KSP applications, the
key point is to find out few best solutions rather than
to enumerate all or a large number of shortest paths in
a graph.

The remainder of this paper is organized as fol-
lows. Some preliminaries are described in Section 2,
including A* and on-the-fly search strategies. Section
3 presents the proposed algorithm with its implemen-
tation in detail. An simple example to illustrate HRAF
is carried out in Section 4. Section 5 gives the correct-
ness and complexity analysis of HRAF. Simulations
based on a benchmark data set and conclusions are p-
resented in Section 6 and Section 7, respectively.

2 A* and On-the-fly Search

Let G = (V,E) be a directed graph, whereV is the
set of nodes andE⊆ V × V is the set of edges. Given
an edgee = (u, v) ∈ E, we representtail(e) by u

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guisong Liu, Zhao Qiu, Wenyu Chen

E-ISSN: 2224-3402 305 Volume 12, 2015

andhead(e) by v. Letw : E → R > 0 be a function
mapping edges to non-negative real-valued weights or
lengths. Lets, t∈V denote the source and target n-
odes, respectively. A path inG is denoted byP , with-
out loss of generality,Pn denotes then-th shortests-t
path inG. The length of a pathP = v1 → v2 → .
. . → vn is defined as the sum of the edge lengths,
formally,

l(P) =
n−1∑

i=1

w(vi, vi+1) (1)

For an arbitrary pair of nodesu andv, d(u, v) denotes
the length of the shortest path fromu to v, andd(s, u)
is abbreviated tod(u). If there is no path fromu to v,
thend(u, v) is equal to +∞.

It is known that the A* search[23] is designed for
solving the shortest path problem while making use of
a heuristic estimate. It finds the shortest path from the
start nodes to each node inG. The set of these paths
forms a tree called the shortest path treeT . A* stores
nodes on the search front in a priority queue which is
ordered according to a heuristic evaluation functionf ,
computed as the sum of two functionsd andh,

f = d+ h. (2)

The functiond gives the shortest path length from
nodes to a node, whereash is the heuristic estimate
of the distance from the considered node to the target.
As shown in Fig. 1,f(v) is then an estimate of the
length of ans-t path throughv.

Figure 1: A* search:f(v) = d(v) + h(v) determines
the expansion order of nodes.

We describe the traditional implementation of A*
as follows and we will show the variant of A* imple-
mentation used in HRAF later. At the beginning of
A* search, the search queue contains only the start n-
odes with f(s) = h(s). In each search iteration, the
head of the search queue, sayu, is removed from the
queue and expanded. More precisely, for each suc-
cessor nodev of u, if v has not been explored before,
thend(v) is set tod(u) + w(u, v), andv is put into
the search queue. Ifv has been explored before, then
d(v) is set to the smaller distance of the oldd(v) and

d(u) + w(u, v). We distinguish between two type-
s of explored nodes, namely closed and open nodes.
Closed nodes are those which have been explored and
expanded, whereas open nodes are those which have
been explored but not yet expanded.

Notice that there is a problem when use the above
traditional version of A* to HRAF directly, remember
that HRAF can be used to the graph which multiple
edges between two nodes is allowed, thus, the weight
w(u, v) between nodeu andv is ambiguous. For effi-
ciency consideration and the use of on-the-fly search
strategy, we use the flowing implementation of A*.

The main difference between our implementation
of A* and the traditional implementation of A* de-
scribed above is that we store edges instead of nodes
in the search queue, and the edge in the search queue
is sorted according to the value of functionf(e) which
can be calculate for edgee by:

f(e) = d(tail(e)) + h(head(e)) + w(e). (3)

What is more, no relaxation(change the value ofd in
traditional implementation of A*) of our implementa-
tion of A* is required.

For simplicity, the process of our implementa-
tion can be described as flows (see Fig.1). At the
beginning of the search, setd(s) = 0 and set the
state ofs as closed, the search queue contains on-
ly those edge which outgoing from start nodes with
f(e) = h(head(e)) + d(s) + w(e). In each search
iteration, the head of the search queue, saye, is re-
moved from the queue for processing,head(e) is ei-
ther closed, in this casee is marked assidetrack
edge, or not closed, whene is set as atree edge and
the vertexhead(e) is expanded: for each edgee∗ out-
going fromhead(e), if head(e∗) is not closed,f(e) is
calculated and it is added to the search queue, other-
wise,e∗ is set assidetrack edge. We continue to do
so until the target node is found or the search queue is
empty.

For each explored nodev, d(v) is always equal
to the length of some path froms to v that has been
discovered so far. We refer to this path as the solu-
tion base ofv. The set of these solution bases forms
a search treeT . A* ensures that the search treeT is
a shortest path tree for all closed nodes. Notice that
a shortests-t path is found as soon ast is closed. In
order to retrieve the selected shortest path to some n-
ode, a linkT (v) is attached to each explored nodev
referring to the parent ofv in T . The solution path
can then be constructed by following these links from
t upwards tos.

The heuristic functionh should be admissible,
which guarantees that a shortests-t path will be found
by A*, referring to Ref[23] for more information.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guisong Liu, Zhao Qiu, Wenyu Chen

E-ISSN: 2224-3402 306 Volume 12, 2015

Some search algorithms can be performed on-the-fly,
including A*. This means that they can be applied to
an implicit description ofG, by usings and a func-
tion succ : V → Π(V), which returns the set of it-
s successor nodes for each nodeu, i.e., succ(u) =
{v|v ∈ V, (u, v) ∈ E}. The on-the-fly strategy
enables the partial generation and processing of the
problem graph as needed by the search algorithm.
This strategy is able to improve the performance and
scalability of many search algorithms because there
is no need to process the entire graph. It also saves
memory since the search algorithm does not need to
manage the entire graph in its data structures. The on-
the-fly feature finally allows the algorithm to handle
graphs which are either infinite, or finite but too large
to fit into main memory.

3 The Proposed Algorithm

The HRAF algorithm is designed to quickly find thek
shortest paths as soon as the shortest path from source
nodes to goal nodet is obtained. In HRAF, A* search
is first applied to the problem graphG until t is chosen
for expansion. At this moment, A* is suspended and
the first shortests-t path is acquired. Then the nextk-
1 shortest paths can be constructed in a recursive way
as follows,

1. Exploring theith shortest path to obtain all can-
didate shortest paths.

2. Choosing a shortest path from candidate path list
to be the(i+ 1)th shortest-path froms to t.

3. Recursively doing this until allk shortest paths
are found.

As we mentioned earlier, HRAF is designed to perfor-
m on-the-fly and to be guided by heuristic search. In
the process of recursively findingk-1 shortest paths,
A* will be resumed as needed.

3.1 A* search on G

HRAF applies A* search to the problem graphG to
compute a search treeT . Note that A* computes a
search tree while searching for a shortest path from
s to t, this tree is formed by the father-node links
that are stored while A* is searching in order to be
able to reconstruct the path froms to t. Every edge
founded by A* will be marked as eithertree edge

or sidetrack edge. If an edge(u, v) belongs to the
shortest path treeT , we call it atree edge, otherwise,
it is a sidetrack edge. As shown in Fig.2, lets0 be
the start node ands3 be the target node. The shortest

Figure 2: Example graph: the solid arrow lines repre-
sent the search tree computed by A*; the dashed arrow
lines are the sidetrack edges.

path tree is highlighted by solid arrow lines. We apply
A* to G in a forward manner, which yields a search
tree T rooted ats. The forward search strategy is nec-
essary in order to be able to work on an implicit de-
scription of the problem graphG using the successor
functionsucc. Notice that HRAF can perform on-the
fly search: HRAF first applies A* search toG until
the goal nodet is selected for expansion and resume
A* when required. In the remainder of the paper,G is
assumed to be a locally finite graph, if nothing else is
explicitly stated.

3.2 Path Representation

We represent everys-t path as a list ofsidetrack
edges. Each edge either belongs to the shortest path
treeT , tree edge or is asidetrack edge, as we men-
tioned above. For anys-t pathP in G, we denote
the subsequence of sidetrack edges usingξ(P), which
are taken inP . In this way,P can be unambiguously
described by the sequenceξ(P). In other words, the
mappingξ(.) from subsequence ofsidetrack edges

to s-t path is injective. Consequently, there is a partial
injective inverse mappingχ(.) so thatχ(ξ(P))=P . The
mappingξ(.) establishes this unique way of complet-
ing the sequence ofsidetrack edges ξ(P) by adding
the missing tree edges in order to obtain P(see Ref[9]).
In Fig. 2, letP be the paths0 → s1 → s2 → s3. No-
tice thatπ=ξ(P)= {(s1, s2)} andnext(π)=s1. From
the sidetrack sequence{(s1, s2)} we can obtain the
pre-imageχ{(s2, s1)}=P , P=s0 → s1 → s2 → s3
as follows. We start at the goal nodes3 and add the
tree edge(s2, s3) to P. It is clear thats2 is the head
node of the sidetrack edge(s1, s2), so we add the side-
track edge(s1, s2) to P. Then thetreeedge (s0, s1) is
added toP . This results in completing the pathP =
s0 → s1 → s2 → s3.

In the following section, we denoteπ to be the
subsequence ofsidetrack edge of an s-t path in G,
andπi = ξ(Pi) to be the subsequence of sidetrack

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guisong Liu, Zhao Qiu, Wenyu Chen

E-ISSN: 2224-3402 307 Volume 12, 2015

edges of theith shortest pathPi in G. Let next(πi)
be the next node of the start nodes in pathPi.

Representing paths bysidetrack edge is very im-
portant in our algorithm. As we have described, we
can represent a path by sequence ofsidetrack edge,
which is a verycheap way. In this way, all candidate
paths can possibly be explored efficiently.

3.3 Computingk Shortest Paths Recursively

In order to clarify our procedure, we first illustrate
how HRAF computes the second shortest path from
the (first) shortest path, and then from theith shortest
path to the(i+ 1)th shortest path.

After the shortest-path tree onG is constructed,
we obtain the shortests-t pathπ1 = ξ(P1), as well
as every other node’s (closed in A*) shortest path to
s. Note that our shortest path treeT is rooted at the
start nodes. We iterate over all nodes excepts in
the shortest path to produce all candidate paths for
the second shortest path in the following way: for
every nodev in the shortest path excepts, we con-
sider every sidetrack edgee which is incoming tov,
as a candidate path, whose length is calculated by
d(t) − d(v) + w(e) + d(tail(e)). Then, we add this
candidate path to the candidate path listC ordered by
path length. Finally, we choose a shortest path fromC

to be the second shortest pathπ2 and remove this path
from C. πi+1 can be constructed fromπi in a similar
way. We iterate over all nodes inPi from next(πi) to
the tail of the last sidetrack edge ofπi. Let lv be the
tail node of the last sidetrack edge inπi. For every
incoming sidetrack edgee to v (v is the node inPi

from next(πi) to lv), by addinge to the end ofπi, a
candidate pathπc can be constructed whose length is
l(πc) − d(v) + w(e) + d(tail(e)). Thenπc is added
to the candidate path listC. We regard all these can-
didate paths found in this step as the candidate paths
explored byπi. Finally, we choose the shortest path
from C to beπi+1 and remove it fromC.

3.4 Implementation of the Algorithm

The algorithm principle of HRAF is shown in Fig. 3.
First, we run A* on graphG until the target node
t is selected for expansion. In this moment, we get
the first shortest path froms to t, which is consist of
tree edges and is a empty sequence when represent-
ed by sidetrack edges. Then, we explore the next
k-1 shortest path tree recursively. Algorithm 1 shows
the pseudo-code of HRAF.

The code from line12 to line 29 forms the main
loop of HRAF. The loop terminates when the candi-
date path listC is empty or thekth shortest path is pro-
duced. The lines before line12 perform some prepa-

Algorithm 1: The HRAF Algorithm.

Data: A graph given by its start node s and goal node t and a function
succ and a natural number k

Result: A list R containing k sidetrack edge sequences representing k

shortest paths
1 Function succ(v) return all edges outgoing or incoming from v.
2 openA : empty priority queue, store opened vertices in A*.
3 closeA: empty hash table, store closed vertices in A*.
4 C: empty priority queue, candidate path list, ordered by path length.
5 R: empty list, result paths list.
6 π:empty list, represent a path(consist of sidetrack edge).
7 lv ← t.
8 run A* on G until the goal node t is selected for expansion.
9 if t was not reached then

10 exit without a solution.
11 end

12 do

13 foreach v in χ(π) from lv to next(π) do
14 foreach incoming edge e in succ(v) and is not tree edge do

15 if tail(e) is not in closeA then

16 run A* until tail(e) is added to closeA.
17 end

18 if e is not set as sidetrack edge then set e as sidetrack edge

19 add e to π form Pc

20 calculate length of Pc

21 add Pc to C

22 end

23 end

24 π ← shortest path on C

25 erase π from C

26 lv ← tail of last sidetrack edge of π
27 add π to R

28 if R.size == k then break

29 while C is not empty

30 return R

Figure 3: HRAF Algorithm Structure

ration tasks. After some initialization statements, A*
is started at line8 until t is selected for expansion, in
which case the first shortests-t path has been found. If
t is not reachable, then the algorithm terminates with-
out a solution. Notice that it would not terminate on
an infinite graph. Otherwise, the algorithm assigns
the goal nodet to lv, which represents the tail node of
the last sidetrack edge of the previous shortest path.
HRAF then enters its main loop. After having got
the first shortests-t pathπ1, we compute the nextk-1
shortests-t paths recursively.

HRAF iterates over all nodesv in Pi from lv to
next(π)(the second node ins-t pathχ(π)) (see line
13), and for each incoming edge(not marked astree

edge) e to v. If tail(e) is not closed in A*, then we
resume A* untiltail(e) is selected for expansion. No-
tice that every closed node has exactly one incoming
tree edge, thus, if e is not set assidetrack edge set
e as sidetrack edge. Line19 to 21 construct candidate
paths that relate toe, and decide if this candidate path
should be added to the candidate path listC or not.
Notice that in line21, in order to make sure the can-
didate path listC contain at mostk-1 paths. IfC is
not full, add the new candidate path toC, otherwise,
choose the shortest one of the new candidate path and
longest path inC. In line 24 to 28, the parameters is
updated to prepare for the next loop. If we have pro-

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guisong Liu, Zhao Qiu, Wenyu Chen

E-ISSN: 2224-3402 308 Volume 12, 2015

duced thekth shortest path or candidate path listC is
empty, HRAF terminates, otherwise, it continues with
the main loop.

4 An Example Using HRAF

We use the following example to illustrate how HRAF
works. Consider the directed, weighted graphG in
Fig. 4 which is similar to the example graph used in
[10]. The start node iss0 and the target node iss6.
We use HRAF to find the8 shortest paths froms0 to
s6. We assume that a heuristic estimate exists. The
heuristic values are given by the labelsh(s0) to h(s6)
in Fig. 4. It is easy to see that this heuristic function
is admissible. We first apply A* search toG until s6
is found. The part ofG explored so far is illustrated
in Fig. 5. Note that the solid arrow lines represen-
t the search tree computed by A*; the dashed arrow
lines are thesidetrackedges. A* is suspended af-

S0

S1

S2

S3
S5

S6S4

3

5

7

1

16

3

4
1

14

1

9

7

2

h(s0)=7

h(s1)=7

h(s2)=2

h(s4)=1

h(s3)=7
h(s5)=4

h(s6)=0

1

6

Figure 4: Example graph with 7 nodes and 16 edges.

S0

S1

S2

S3
S5

S6S4

3

5

7

1

16

3

4
1

14

1

9

7

2
h(s0)=7

d(s0)=0

h(s1)=7

h(s2)=2

d(s2)=5

h(s4)=1

d(s4)=6

h(s3)=7
h(s5)=4

h(s6)=0

d(s6)=7

1

6
f=10

f=9

f=9
f=13

f=14

f=20

f=28

f=7

f=7

f=7

Figure 5: The explored graph when the goal node
is found using A*: solid arrow lines represent tree
edges; dotted arrow lines representsidetrackedges;
gray dotted lines represent the edges added to open
set in A*; the gray solid lines represent the unexplored
part of the graph; the f value of edges is written below
lines.

ter the goal nodes6 is found, and the first shortest
path (s0 → s2 → s4 → s6) is obtained, then HRAF
begins to find nextk-1 shortest paths. Initially, the

candidate path listC is empty. We explore the first
shortest path (s0 → s2 → s4 → s6) to obtain can-
didate paths by iterating over each node froms6 to
s2 along the shortest path tree T. As we explores6, it
has three edges, onetree edge (s4,s6), then the oth-
er two edges, (s1,s6) and (s5,s6), are set tosidetrack
edges. When edge (s1,s6) is processed, it is noticed
that s1 is not closed in A* so we should resume A*
until s1 is closed, Figure 6 shows the result graph
when s1 is closed. Then, we consider{(s1, s6)} as
a candidate path with a lengthw(s1, s6) + d(s1) = 10,
and this candidate path is added to the candidate path
list. Similarly, when edge (s5,s6) is processed, it is
set assidetrack edge, consider thats5 is not closed
in A*, we resume A* untils5 is closed. Fig. 7 il-
lustrates the updated graph whens5 is closed in A*.
We then consider{(s5, s6)} as a candidate path with
lengthw(s5, s6) + d(s5)= 20 and add this candidate
path toC. After s6 is completely explored, we then
considers4 which is father node ofs6 in the shortest
path tree T. We continue to explores2. The result of
the exploration in this step is illustrated in Table 1.

S0

S1

S2

S3
S5

S6S4

3

5

7

1

16

3

4
1

14

1

9

7

2
h(s0)=7

d(s0)=0

h(s1)=7

d(s1)=3

h(s2)=2

d(s2)=5

h(s4)=1

d(s4)=6

h(s3)=7
h(s5)=4

h(s6)=0

d(s6)=7

1

6
f=10

f=9

f=9
f=13

f=14

f=7

f=28

f=7

f=20
f=7

Figure 6: Result graph whens1 is closed in resumed
A*.

S0

S1

S2

S3
S5

S6S4

3

5

7

1

16

3

4
1

14

1

9

7

2
h(s0)=7

d(s0)=0

h(s1)=7

d(s1)=3

h(s2)=2

d(s2)=5

h(s4)=1

d(s4)=6

h(s3)=7

d(s3)=13

h(s5)=4

d(s5)=16

h(s6)=0

d(s6)=7

1

6
f=10

f=9

f=9
f=13

f=14

f=7

f=28

f=7

f=20
f=7

f=20

Figure 7: Result graph whens5 is closed in resumed
A*.

After having explored the first shortest path, we
have got five candidate paths with the lengths in candi-
date path listC, i.e., (s2 → s4, 9),(s1 → s2, 9),(s1 →
s6, 10), (s1 → s4, 10) and (s5 → s6, 20). We then we

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guisong Liu, Zhao Qiu, Wenyu Chen

E-ISSN: 2224-3402 309 Volume 12, 2015

Table 1: Explored results of the first shortest path
Node s6 s4 s2

Incoming sidetrack edge (s1, s6) (s5, s6) (s1, s4) (s4, s2) (s1, s2)
Candidate path {(s1, s6)} {(s5, s6)} {(s1, s4)} {(s4, s2)} {(s1, s2)}

Path length 10 20 10 9 9

choose a shortest path fromC to be the second short-
est pathπ2. In this case,π2={(s4, s2)}, andπ2 is
erased fromC. Then we go on exploringπ2. We iter-
ate over each node froms4, which is the tail of the last
sidetrack edge ofπ2, to s2 along T. Note thats4 has
one incomingsidetrack edge (s1, s4) from which we
obtain one candidate path{(s4, s2), (s1, s4)}, we add
it to C. We then processs2 which has two incoming
sidetrack edges (s4, s2), (s1, s2). We add them to
π2 and obtain two candidate paths:{(s4, s2), (s4, s2)}
and{(s4, s2), (s1, s2)}, then we add them toC. The
result of this step is listed in Table 2, and the content
of C is listed in Table 3.

We repeat the above step until thekth shortest
path is found or candidate path listC is empty. The
result of this example is enumerated in Table 4.

5 Algorithm Analysis

5.1 Correctness Analysis

Lemma 1: If πi hasj sidetrackedge, then the candi-
date paths explored byπi havej+1 sidetrackedges.

Proof: Remember that the candidate paths ex-
plored byπi are constructed by adding a sidetrack
edge toπi. Thus, in this way, ifπi hasj sidetrack
edges, the candidate paths explored byπi havej + 1
sidetrack edges.�

Lemma 2: The paths in candidate path listC
have at mostk-1 sidetrack edges.

Proof: Note thatπ1 is empty, in other words,P1

has nosidetrackedge, because it is exactly the first
shortest path with all its edges in the shortest path tree.
Note thatπi is not necessarily chosen from the candi-
date paths explored byπi−1. Thus, according to Lem-
ma1, πi has at mosti−1 sidetrackedges, andπk has
at mostk − 1 sidetrack edges. So the path in candi-
date path listC has at mostk − 1 sidetrackedges in
the process of our algorithm.�

The importance of Lemma 2 lies in the space
complexity boundary. From Lemma 2 we can con-
clude that the candidate path listC will at most con-
tain k paths, we have more to say about it in Section
5.2. According to Lemma 2, each path has at most
k-1 sidetrack edge, and we are intend to computek
shortest paths, thus, the worst-case space complexity
of C isO(k2).

Lemma 3: The length of each path explored by
πi is larger than that ofπi.

Proof: Recall how we calculate the candidate
pathπc explored fromπi, the length ofπc is l(πi) −
d(v) + d(tail(e)) + w(e), wherev is one of the n-
odes inPi from next(πi) to the tail of the last side-
track edge ofπi, e is an incoming sidetrack edge to
v. Note thatv is head(e) sincee is a sidetrack edge,
thus,d(tail(e)) + w(e) > d(v) and l(πi) − d(v) +
d(tail(e)) + w(e) > l(πi). �

Lemma 4: There is a one-to-one correspondence
between paths inC ands-t paths in G.

Proof: We prove this lemma by induction. We
first prove that there is a one-to-one correspondence
between paths explored byπ1 ands-t paths inG, then
prove that there is a one-to-one correspondence be-
tween paths explored byπi ands-t path inG.

The first shortest path is the path froms to t along
the shortest path treeT , in other words,π1 is empty,
thus, there is a one-to-one correspondence betweenπ1
ands-t paths inG. Next, we exploreπ1. Let v be a
node inP1 from next(πi) to t, and lete be an incom-
ing sidetrack edge ofv. Then, we form a candidate
pathπc = e, the correspondings-t path inG is from
t to head(e) alongT , throughe, then fromtail(e) to
s alongT , which is implicitly defined. Thus, there is
a one-to-one correspondence between paths explored
by π1 ands-t paths inG. Let lv be the tail of the last
sidetrack edge inπi, similarly, there is a pathπi in G

from t alongPi to lv. Letv is one of nodes inPi from
next(πi) to lv, ande is a sidetrack edge incoming to

Table 2: Result after having explored the second shortest path.
Node s4 s2

Incoming sidetrack edge (s1, s4) (s4, s2) (s1, s2)
Candidate path {(s4, s2),(s1, s4)} {(s4, s2),(s4, s2)} {(s4, s2),(s1, s2)}

Path length 12 11 11

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guisong Liu, Zhao Qiu, Wenyu Chen

E-ISSN: 2224-3402 310 Volume 12, 2015

Table 3: Contents of candidate path listC after having explored the second shortest path
Candidate path Length Candidate path Length
{(s1, s2)} 9 {(s4, s2),(s4, s2)} 11
{(s1, s4)} 10 {(s4, s2),(s1, s4)} 12
{(s1, s6)} 10 {(s5, s6)} 20
{(s4, s2),(s1, s2)} 11

Table 4: The results of 8 shortest paths on the graph in Fig. 4
π = ξ(P) P length

1 {} s0 → s2 → s4 → s6 7
2 {(s4, s2)} s0 → s2 → s4 → s2 → s4 → s6 9
3 {(s1, s2)} s0 → s1 → s2 → s4 → s6 9
4 {(s1, s6)} s0 → s1 → s6 10
5 {(s1, s4)} s0 → s1 → s4 → s6 10
6 {(s4, s2),(s4, s2)} s0 → s2 → s4 → s2 → s4 → s2 → s4 → s1 11
7 {(s4, s2),(s1, s2)} s0 → s1 → s2 → s4 → s2 → s4 → s6 11
8 {(s4, s2),(s1, s4)} s0 → s1 → s4 → s2 → s4 → s6 12

v, then, the candidate path we get now isπi + e, the
correspondings-t path inG is from t alongPi to lv,
then through e tosalongT .�

The correctness of HRAF can be stated as fol-
lows. LetG be a locally finite graph, Lemma 4 en-
sures a one-to-one correspondence between paths in
candidate paths listC ands-t paths inG. This implies
the correctness of HRAF since any path fromC re-
sults in a valids-t path. In other words, the result of
HRAF consists of valids-t paths. Lemma 3 ensures us
to compute thek shortest paths in a non-descending
way. SinceG is a locally finite graph, HRAF will
complete after a finite number of iterations.

5.2 Theoretical Complexity

As we described in Section 3, the computation of
HRAF comprises two steps, including applying A*
search toG and finding thek shortest paths iterative-
ly. It is known that performing A* has an asymptotic
worst-case time complexity ofO(m + n log n). In
finding the k shortest paths by HRAF, we need to
iterate over all incoming edges of the nodes which
rang from the second node of the previous shortest
path to the tail of the last sidetrack edge of previous
shortest path. In the worst case, HRAF needs to it-
erate overm edges. Then, for each sidetrack edge,
we add the corresponding paths to path listC. In
order to limit the size ofC (by using max-heap) to
k − 1, we should determine the maximum elemen-
t of C, which needsO(m) time in worst-case (in
practice very much less thanO(m)). Decreasing the
key of the maximum element ofC and adjustingC

needO(m log k + m) time. We also need to find
the minimum path inC which needsO(k) time, then
we delete it fromC and adjust the heap again which
needsO(log(k)) time. All the operations need to be
performedk − 1 times, the total time complexity on
C is O((k − 1)(m log(k) + m + k + log(k))), i.e.,
O(km log(k) + k2). Thus, the worst case time com-
plexity of HRAF isO(mk log k + k2 + n log n). For
space complexity, in the worst case, we need to store
n nodes andm edges, and maintain a candidate path
list C with its size limited tok − 1. As we mentioned
earlier, listC contains at mostk − 1 candidate path-
s and each path consists of at mostk − 1 sidetrack

edges (see Lemma 2). Therefore, the worst case space
complexity of HRAF isO(m + n + k2). Notice that
some efficient implementation of heap or other data
structure also can be used to implement listC, which
can lower the practical complexity of HRAF.

The theoretical complexity of the HRAF appar-
ently is not so promising especially when we compare
it with EA[9], LVEA[21] and K*[10]. It is known
that all the three algorithms have the same asymptotic
complexities ofO(m + n log(n) + k), for both time
and space. We should point out that the complexities
of HRAF are analyzed in the worst case, neverthe-
less whenk is rather small, the complexities for both
time and space are also comparable. For example, in
practical Transportation Navigation System, the road
map contains more than millions of nodes and edges,
while the system only needs to provides several op-
tions to the users (maybe no more than 10) because
much more selections for users mean lower usabili-
ty. So the performance of the HRAF algorithm for

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guisong Liu, Zhao Qiu, Wenyu Chen

E-ISSN: 2224-3402 311 Volume 12, 2015

KSPs computation is considerable whenk is very s-
mall. The following experiments demonstrate our s-
tandpoints.

6 Simulations

As we discussed above, K* is more efficient than EA
and LVEA for single-pair KSPs computation accord-
ing to their experiments, although the three famous al-
gorithms have same theoretical complexities. There-
fore, we compare HRAF only with K* in the sim-
ulations. We implement HRAF and K* using C++
in Microsoft Visual Studio 10.0. In our simulation-
s, the graph data are first loaded into the main mem-
ory stored as an adjacency list in which we can ac-
cess edges by node. The CPU time is obtained in
milliseconds by using the C++ function GetSystem-
Time(). Note that we neglect the time needed for load-
ing graph data into main memory, and the memory
consumption is measured by PagefileUsage, which is
part of process information returned by the function
GetProcessMemoryInfo. We run all experiments on
a desktop computer equipped with an Intel Pentium
Dual-Core CPU (2GHz) and 2GB memory. No paral-
lel implementations are taken into account in the ex-
periments.

Our simulations of both algorithms are based on
four maps: New York City, San Francisco Bay Area,
Colorado and Florida, as shown in Table 5. The maps
data are available from the home page of the 9th DI-
MACS Implementation Challenge[24]. We use airline
distance, which is computed by the law of cosines, as
a heuristic estimate for both algorithms. Four differ-
ent pairs of start-goal nodes(from center of the map to
the edge, or from a side to another side according to
its coordinates) are randomly selected for each map,
we then run the algorithms20 times for each pair. In
order to fully compare the above two algorithms, K*
and HRAF, we first compare needed runtime using
both algorithms whenk is equal to one, then compare
runtime whenk is small (less than 50). The overall
comparisons about runtime and space consumption of
both algorithms are also listed.

Table 5: Datasets of 4 maps used in our simulations.
Map Abbr. No. Nodes No. Edges

Colorado COL 435,666 1,057,066
San Francisco BAY 321,270 800,172
New York City NY 264,346 733,846

Florida FLA 1, 070, 376 2, 712, 798

6.1 Runtime Comparisons

For HRAF and K*, settingk = 1 means finding the
shortest path in a map. In each map, fours-t nodes are
randomly selected with20 times running on both al-
gorithms. Then we obtain an average runtime for each
s-t path computation and finally the average runtime is
calculated over four computations. All the following
simulations use the same testing method.

For finding only the shortest path, the runtime
comparison for both algorithms is listed in Table 6.
We can conclude that HRAF outperforms K* by about
11% to 28% when we just compute one shortest path
from related maps. This is due to the fact that HRAF
just uses A* to compute shortest path tree and obtain
the first shortest path while K* needs to establish a
complicated path graph when it uses the A* search.

An overall runtime comparison is shown in Fig.
8. It takes more runtime whenk increases for the both
algorithms. However, HRAF always performs better
in the NY map and BAY map, while whenk is larger
than78 in COL map and95 in FLA map, K* is the
better choice.

0 50 100 150 200
4000

4500

5000

5500

6000

6500

K (map:COL)

ru
nt

im
e(

m
s)

0 50 100 150 200
5000

5500

6000

6500

7000

7500

8000

8500

9000

K (map:BAY)

ru
nt

im
e(

m
s)

0 50 100 150 200
6500

7000

7500

8000

8500

9000

K (map:NY)

ru
nt

im
e(

m
s)

0 50 100 150 200
1.2

1.3

1.4

1.5

1.6

1.7
x 10

4

K (map:FLA)

ru
nt

im
e(

m
s)

Hraf
K*

Figure 8: Runtime comparisons on four maps.

Table 7 shows the full notes of the execution of
both algorithms with the detailed improvement when
k is less than50. HRAF is able to obtain an average
improvement on the four maps with more than12%
to about18%. Clearly, there exists a tendency that
the improvement becomes smaller and smaller as the
number of routes needed to be computed increases.
Furthermore, we can see that different maps resulted
in different performance, this is due to the difference
of the four maps and the influence of random selec-
tions of thes-t node pairs in each map.

It is easy to conclude that the value ofk has a

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guisong Liu, Zhao Qiu, Wenyu Chen

E-ISSN: 2224-3402 312 Volume 12, 2015

great influence on HRAF, i.e, the larger the value ofk,
the more runtime is needed to find the routes. Howev-
er, K* is less sensitive tok, i.e, time consumed using
K* changed little whenk increased. It is clear that
HRAF outperforms K* whenk is less than a thresh-
old, which depends on the number of nodes and the
number of edges of the explored graph. When the
number of nodes in the map increases, HRAF per-
forms better with biggerk than K* does.

It is known that many practical applications do
not need too many best path selections, just like Trans-
portation Navigation System. Usually, it is enough for
an algorithm to provide a limited number of optimal
solutions, which is the key point of HRAF compared
with K*.

6.2 Space consumption comparison

Space consumption is also important for an algorithm
when solving the KSP problem. Fig. 9 shows the s-
pace usage for both algorithms obtained when running
once each for different value ofk.

It is clear that HRAF is able to save about15%
space compared with K* whenk is no more than50.
We can also conclude that the space consumption for
HRAF grows proportionally whenk increases in our
experiments, just like runtime. Meanwhile, HRAF
consumes less memory than K* whenk is rather s-
mall. Notice that the worst-case space complexity of
HRAF isO(m+n+K2), which means that the worst-
case space required using HRAF grows quadratically

0 200 400 600 800 1000
2.5

2.6

2.7

2.8

2.9

3
x 10

5

K (map:COL)

sc
pa

ce
 (

K
B

)

0 200 400 600 800 1000
1.8

1.9

2

2.1

2.2

2.3
x 10

5

K (map:BAY)

sc
pa

ce
 (

K
B

)

0 500 1000
1.5

1.6

1.7

1.8

1.9

2
x 10

5

K (map:NY)

sc
pa

ce
 (

K
B

)

0 200 400 600 800 1000
6

6.5

7

7.5
x 10

5

K (map:FLA)

sc
pa

ce
 (

K
B

)

Hraf
K*

Figure 9: Space performance comparisons on four
maps.

with K. However, this worst-case bound is very hard
to achieve, because the candidate path explored byith

shortest path has at mosti− 1 sidetrackedges and is
much lower thani in practice.

7 Conclusions

There are many publications aiming to solve the
single-pair KSP problem. We reported a new algo-
rithm named HRAF, which operates on-the-fly strat-

Table 6: Runtime (ms) comparison whenk = 1 with 4 randomly selecteds-t pairs.

s-t
COL BAY NY FLA

K* HRAF K* HRAF K* HRAF K* HRAF
1 7291 6454 8030 6125 8729 7081 15738 13908
2 5620 4988 7966 5684 8415 6583 10714 9489
3 3589 3112 8020 5751 8437 6653 15638 13834
4 3485 3075 7615 5132 8641 7001 13861 15620
Avg 4996 4407 7908 5673 8555 6829 14428 12773
Ipv 11.8% 28.3% 20.2% 11.5%

Table 7: Average runtime (ms) for finding less than 50 routes on four maps for both algorithms.

K
COL BAY NY FLA Avg.

K* HRAF K* HRAF K* HRAF K* HRAF Ipv
1 4996.3 4407.3 7908.1 5673.0 8555.5 6829.6 14427.9 12773.2 17.9%
5 4994.1 4484.6 7900.3 5827.3 8550.3 6898.0 14407.2 12896.816.6%
20 5002.3 4596.8 7911.1 5950.2 8557.4 6955.4 14414.5 13210.715.0%
30 5009.0 4688.2 7915.0 6002.2 8563.0 6989.8 14440.0 13406.514.0%
40 5018.3 4767.0 7920.6 6043.8 8576.7 7025.8 14431.7 13582.113.2%
50 5025.1 4852.1 7928.2 6114.9 8581.5 7055.4 14435.4 13729.412.3%

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guisong Liu, Zhao Qiu, Wenyu Chen

E-ISSN: 2224-3402 313 Volume 12, 2015

egy and can be guided using heuristic estimates. We
proved its correctness and determined its asymptotic
worst-case complexities for runtime and space con-
sumption. Our experimental results show that HRAF
outperforms the famous KSP algorithm K* whenk is
small. The performance advantage compared to K*
becomes smaller whenk increases. Whenk arrives at
a threshold (usually with a very largek), HRAF ex-
hibits performance worse than K*.

Acknowledgements: This work was sup-
ported by the Fundamental Research Funds for
the Central Universities (grant No.ZYGX2013J076),
Sichuan Science and Technology Department (grant
No.2015SZ0045) and National Science Foundation of
China (grant No.61273308).

References:

[1] W. Hoffman, R. Pavley, A method of solution of
the Nth best path problem,Journal of the ACM,
Vol.6, No.4, 1959, pp.506-14.

[2] J.Y. Yen. Finding the K shortest loopless paths in
a network,Management Science, Vol.17, No.11,
1971, pp.712-6.

[3] Y. Honma, M. Aida, H. Shimonishi, New rout-
ing Methodology Focusing on the Hierarchical
Structure of Control Time Scale,WSEAS Trans-
actions on Communications, Vol.13, No.1, 2014,
pp.505-12.

[4] Berclaz J, Fleuret F, Turetken E, Multiple ob-
ject tracking using k-shortest paths optimization.
IEEE Trans on Pattern Analysis and Machine In-
telligence, Vol.33, No.9, 2011, pp.1806-1819.

[5] Ozer B, Gezici G, Meydan C, et al, Multiple se-
quence alignment based on structural properties,
2010 5th International Symposium on Health
Informatics and Bioinformatics (HIBIT), IEEE,
pp.39-44.

[6] Y.K. Shih, S. Parthasarathy, A single source k-
shortest paths algorithm to infer regulatory path-
ways in a gene network,Bioinformatics, 2011,
Vol.28, No.12, pp.49-58.

[7] W. Xu, S. He, R. Song, Finding the K shortest
paths in a schedule-based transit network,Com-
puters & Operations Research, Vol.39, No.8,
2012, pp.1812-1826.

[8] X. Wan, L. Wang, N. Hua, et al, Dynamic rout-
ing and spectrum assignment in flexible optical
path networks,National Fiber Optic Engineers
Conference, Optical Society of America, 2011.

[9] D. Eppstein. Finding thek shortest paths,SIAM
J. Computing, Vol.28, No.2, 1998, pp.652-73.

[10] H. Aljazzar, S. Leue, K*: a heuristic search algo-
rithm for finding the K shortest paths,Artificial
Intelligenc, Vol.175, No.18, 2011, pp.2129-54.

[11] A. Sedeno-Noda, An efficient time and space
K point-to-point shortest simple paths algo-
rithm, Applied Mathematics and Computation,
Vol.218, No.20, 2012, pp.10244-57.

[12] A. Sedeno-Noda , J.J. Espino-Martin, On the K
best integer network flows,Computers& Oper-
ations Research, Vol.40, No.2, 2013, pp.616-26.

[13] Z. Gotthilf, M. Lewenstein, Improved algo-
rithms for the kshortest paths and the replace-
ment paths problems,Information Processing
Letters, Vol.109, No.7, 2009, pp.352-55.

[14] J. Hershberger, M. Maxel, S. Suri, Finding the
k Shortest Simple Paths: a new algorithm and
its implementation.ACM Transactions on Algo-
rithms, Vol.3, No.4, 2007.

[15] A. Perko, Implementation of algorithms for K
shortest loopless paths,Networks, Vol.16, No.2,
1986, pp.149-60.

[16] V.M. Jimenez, A. Marzal, Computing thek
shortest paths: A new algorithm and an exper-
imental comparison,Lecture Notes in Computer
Science, Vo.1668, 1999, pp.15-29.

[17] Y.L. Chen, H.H. Yang, Finding the first K short-
est paths in a time-window network,Computer-
s & Operations Research, Vol.31, No.4, 2004,
pp.499-513.

[18] L.R. Nielsen, K.A. Andersen, D. Pretolani,
Finding the K shortest hyperpaths,Computer-
s & Operations Research, Vol.32, No.6, 2005,
pp.1477-97.

[19] H.H. Yang, Y.L. Chen, Finding K shortest loop-
ing paths in a traffic-light network,Computer-
s & Operations Research, Vol.32, No.3, 2005,
pp.571-81.

[20] E. Martins, M. Pascoal, J. Santos, A new algo-
rithm for ranking loopless paths,Technical re-
port, Universidade de Coimbra, Portugal 1997.

[21] V.M. Jimenez, A. Marzal, A lazy version of Epp-
stein’s shortest paths algorithm,Lecture Notes in
Computer Science, Vol.2647, 2003, pp.179-90.

[22] E.W. Dijkstra, A note on two problems in con-
nexion with graphs,Numerische Mathematik,
Vol.1, No.1, 1959, pp.269-71.

[23] J. Pearl, Heuristics: Intelligent Search Strategies
for Computer Problem Solving,Addision Wes-
ley, 1986.

[24] The 9th DIMACS implementation challenge:
The shortest path problem, University of Rome.
http://www.dis.uniroma1.it/ challenge9/, 2006.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guisong Liu, Zhao Qiu, Wenyu Chen

E-ISSN: 2224-3402 314 Volume 12, 2015

